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Abstract — The propagation properties of two inductively
coupled supercond~ct;ng-transr&;on lines have been studied.
An expression for the attenuation of the coupled-line modes was
derived for the case of low loss. It was found that, for
transmission line geometries of practical interest, the low loss
expression agrees well with the more general numericaJ solution.
The numerical solution was used to determine the dispersion
characteristics of inductively coupled lines as a function of the
superconductor thicknesses and the operating temperature. A
lumped-element equivalent circuit, with the same dispersion
equation, is presented along with the relationship between the
lumped-element values and the physical parameters of the line.
Prototype circuit elements such as 20 dB couplers have been
designed.

I. INTRODUCTION

Superconducting transmission lines have many advantages
for signal processing applications including low loss, wide
bandwidth, and low dispersion. Impressive results have been
obtained using superconducting microstrip as a basic circuit
building block[l]. Recently there has been considerable interest
in the miniaturization that can be realized by configuring
superconducting microstrip so that the kinetic inductance
dominates the magnetic inductance. The kinetic inductance is a
measure of the energy stored in the kinetic motion of the charge
carriers in a conductor. The effect of this inductance on the
phase velocity of a superconducting transmission line was first
noted by Pippmd[2]. An analytical solution for the propagation
characteristics of a superconducting parallel plate tmmsmission
line was developed by Swihart[3]. By fabricating a super-
conducting microstrip where the ground plane, dielectric, and
strip are all much thinner than the superconducting penetration
depth, phase velocities as low as O.OIC have been achieved[4].
In addition to the usual advantages afforded by superconducting
electronics, the miniaturization available from this approach
could significantly reduce the size and weight of microwave
signal processing circuits.

A consequence of achieving the very slow phase velocities is
that the superconducting films used for the ground plane and
strip are much thinner than the superconducting penetration
depth, which is the characteristic decay length of a magnetic field
into a superconductor. When the superconducting film is
thinner than the penetration depth it is possible for
electromagnetic energy on one side of the superconducting fiim
to be transferred to the other side of the film. Owen and
Scalapino developed equations describing the transfer of
electromagnetic energy (inductive coupling) between a
Josephson junction and a superconducting microsrnp where one
superconducting film is common to both structures and is also

thin compared to the penetration dept h[5]. This structure has
recently been realized and the results agree well with the
predicted behavior[6].

Previous work on inductive coupling through a thin lossless
superconducting films has concentrated on the transfer of energy
between a Josephson junction and a microstrip. In contrast, in
the following section the lossy case of two inductively coupled
superconducting transmission lines will be considered, where all
layers (dielectric and superconductm) can be of arbitraxy
dimension. In addition to developing a dispersion equation for
the two dominant modes of the coupled line, an expression for
the attenuation of these two modes is developed and calculations
of the loss dependence on several film parameters are made.
These results are used to investigate the possibility of exploiting
coupled modes for low-loss delay lines and to design prototype
circuit elements using inductive coupling as a means of
transferring energy between transmission lines.

II. DISPERSION EQUATION

The geometry of the coupled parallel plate transmission lines
is shown in Fig 1. The structure consists of a three
superconducting layers of thicknesses dl, d3, and dj,
respectively. Layers dl and d3 are separated by a dielectric layer
of thickness dz, and layers d3 and d5 are separated by a dielectric
layer of thickness d4. It is assumed tlhat only the lowest order
TM modes, propagating along the z a~is, exist and hence Hx =
Hz= Ey = O. It is further assumed that the London equations in
local form describe the behavior of the fields in the
superconductor and hence the field components in each region
(n= 0,...,6) are given by

(Z=~C;e }
‘%.x ● c; e+hx ~ j(co t- kzn z)

Eq. 1

where, C; ~d C: are unknown amplitudes of the transverse
propagating waves. For the superconductors (n= 1,3, 5)

$.= k!n-co2poe. +Ai2+jmpot%

=k&v2~en+A;2
(

1 + j 2?#6~ )
Eq. 2

and, for the dielectric regions (n= 0,2,4, 6)

$n = k;n - k;

where

k; = 0.)2PO ~ &rn

The superconducting

Eq. 3

Eq. 4

penetration deplh, L is related, via the

* P. Weaver is at the Naval Research Laboratory on sabbatical leave from the University of Hawaii.

t I. Kaufmm is with fizona State I.University and participated in the ASEE visiting faculty program at the Naval Research Laboratory.

451

CH2725-O/89/OOOO-0451 $Ol .0001989 IEEE 1989 IEEE MTT-S Digest



dl

d2

d~

db

d~

Fig. 1.

x
4

The geometry of the inductively coupled transmission lines is
shown. Each dielectric layer forms a parallel ptate waveguide
with the two superconducting films which clad it. Coupling is
accomplished by the magnetic field penetrating through the
center superconductor thus requiring the center superconductorto
be on the order of a pmerration depth thick.

London equations, to the supercurrent, ~, , while on is

related to the current due to the electrons in the normal state, Jn.

Thus, the total current in the superconductor is given by

?=~+$= 1 F+ Crflz

jfo ~ /

()

.~l+j ~~ (n=l,3,5)Eq.5

jfo ~ An 6;

The transverse resonance method is applied to determine the
dispersion relationship. Under assumptions analogous to those
made by Swihart for a parallel plate waveguide, the dispersion
relationship becomes

Eq. 6
where

, “~=k’{1+~coth(2)+*co’h(*))(n=24)
Eq. 7

and

a’. = a. (1 +j 2(an/&)2)-1’2 (n=l,3,5) Eq.8

The expressions for kz2 and kz4 are the dispersion equations for

the uncoupled lines, i.e. when either dz or r& is infinite, and can
be shown to be equivalent to generalized forms of the expression
developed by Swihart[3].

Assuming ($n >> An, a first order expansion of Eq. 8,

substituted into Eq. 6, yields an expression which is valid for
the case of low loss (the dielectric is assumed to be lossless) and
is given by

where

KMI = k;. - k;.

()KM2 - ‘k2 kd A3

m Sinh(ds /aJ

KM3 = (A3 /t$)2( 1 + (d3 /A3) COth (d3 /A3))

kzo = kz(& =83= c$5 = -)

kzw = kzn(r$n-l = &+ I = -)

an= h-l X-1

()

~ot~ 4r-1 + fn+l ar?+l ~Oth dn+l

dn Zi;_l an-l dn 6;+1 (–)an+l

(n= 2,4)
and

‘n=l+N’%)-’anh(t)l ‘“=1’3”)

/

E@. 9

Eq. 10

Eq. 11

Eq. 12

Eq. 13

Eq. 14

Eq. 15

Eq. 16

The first and second terms of Eq. 9 are the real and imaginary
.

parts, respectively, of k$ . Assuming that the real part of Eq. 9

is much larger than the imaginary part of Eq. 9, the real and
imaginary pints of kz are approximately given by

Eq, 17

Eq. 18

Eq. 19

where J3Zand ctz are the phase and attenuation constants and AZ
is the wavelength along the transmission line. The loss per
wavelength is given by Eq. 19,

The two roots of the dispersion equation correspond to the
two possible modes of the transmission line. In Fig. 2 the
elecrnc field patterns for the two different modes me shown.

Field orientation for the mode Field orientation for the mode
corresponding to the root of the corresponding to the root of the
dispersion relationship when the dkpersion relationship when the

sign of the coupling term is sign of the coupling term is
negative

supcr-
,S8:.,... t,~

conductor

11 lE~ ~ ~ dielectric
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111411
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conductor

Fig. 2. The electric field orientation for the two dominant modes is
shown. The electric fields have the same sign (in phase) when
the reot of the dkpersion relationship uses the positive sign of
the coupling term, Similarly, the electric fields have the
opposite sign (Out of phase) when the root of the dispersion
relationship uses the negative sign of the coupling term.
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The root given by the dispersion relationship when the coupling
term is negative corresponds to the situation where the electric
fields are in phase, when the elecrnc fields are arranged out of

phase the coupling term is positive. The terms @ and @4 can

be shown to be generalized forms of the loss expression
developed by Swihart for an isolated stripline [3].

III. RESULTS

Computations based on these expressions show that the two
modes have substantially different propagation constants,
especially as the superconducting film thicknesses become
substantially smaller than a penetration depth. Throughout the
remainder of this discussion, unless otherwise noted, it is
assumed that the coupled line structure is symmetric and is
composed of superconducting films with a critical temperature of
12 K, a penetration depth of 300 nm, and a normal state

conductivity of 1.0 x 106 S/m. The dielectrics are assumed to
have a relative permittivity of 10 and the operating frequency is
10.0 GHz. These film parameters are consistent with earlier
experimental work involving niobium nitride microstrip
operating in a kinetic inductance dominated regime [4]. Fig. 3
shows the phase velocity (VP) and attenuation in dB/wavelength
for the symmetric case of dI = d~ =20 nm and dz = d4 = 100
nm as the mutual coupling is reduced by varying d3 from 20
nm to 100 nm. As can be seen horn Fig. 3, VP is substantially

1.5 x 107

1,2 x 107
‘3
g

~ 0.9 x 107.5
0

z

~ 0.6X 107
0
z
s
& 0.3 x 107

0

negative root

powwe root

0 ’20 40 60 80 100

Thickness of Center Superconductor (rim)

Fig. 3. Phase velocities and attenuations are shown for the two dominant
modes of the coupled line as a function of the tbiekrress of the
center superconducting film. As the center superconductor
thickness increases the coupting decreases.

different for the two modes as d3 gets thinner. However, the
attenuation per wavelength is virtually the same for both cases.
This would indicate that for purposes such as delay lines, where
a lower VPyields a more compact component, there is no penalty
for using the mode with the lower phase velocity. The
temperature dependence of both Vp and the inductive coupling is
shown in Fig. 4. Since the penetration depth increases as a
function of temperature, Vp decreases for both modes and the
coupling increases. The dispersion of these lines is very small at
all frequencies and temperatures where the attenuation is
reasonable for circuit applications.

An equivalent circuit of distributed elements for the coupled
line structure is shown in Fig. 5. The expressions for these
elements are determined by comparing Eq. 6 with the dispersion
relationship for a pair of magnetically coupled transmission
lines. The shunt capacitance, Cn, and shunt conductance, Gn,
of each of the dielectric regions (n = 2, 4) follow directly from

the parallel plate geometry and the loss properties of the
dielecrnc. In this discussion the losses associated with the
dielectric have been ignored, but cart easily be included by
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Fig. 4. Phase velocities and attenuations are shown for the two dominant
modes of the coupled line as a function of the temperature. As
the temperature increases the penmation depth increases resulting
in skmrger coupling between the transmission lines. Afso, as
the temperature increases, the density of carriers in the normaf
state increases causing an increase in the attenuation per
wavelength.

Fig. 5. The equivalent circuit for the cIwrpled line structure is shown.
The coupting is modeled by the mutual inductance, M3, which,

to properly account for loss, must be a complex quantity.

allowing &z and e4 to be complex permittivities. Each

superconductor (n = 1, 3, 5) can be modeled as a parallel
combination of its kinetic inductance, Lkn, (accounting for the

energy stored due to the carriers in the superconducting state)
and its normal conductance, Gn, (accounting for the losses due
to the carriers in the normal state) [7]. In addition, the magnetic
inductance, Lmn (n = 2, 4), (accounting for the magnetic energy

stored in the dielectric regions) has the familiar form for a
parallel plate waveguide. The fin al element is the mutual
inductance, M3, which quantifies the coupling of energy through
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the common superconducting film. In order to accurately model
the dispersion relationship, however, it is necessary for M3 to be
a complex quantity. This is due, in part, to the fact that there are
current carriers in both the normal state and superconducting
state which contribute to the coupling of energy between
transmission lines. The expressions for these quantities are
given by

Cn=+
n

Gn=qf
n

(n= 2,4)

(n= 2,4)

(n= 2,4)

(n= 1,3, 5)

Eq. 20

Eq. 21

Eq. 22

)n (Jll+Hcoth(a-’anhtil]G. = (~ A tanh ~

Eq. 23

(n= 1,3, 5) Eq. 24

(23){(A,)[1+:4;)]}‘q25M3=po#&xch ~ l–j~2

where W is the width of the parallel plate waveguide. The
expressions for the capacitances, conductance, and inductances
are given on a per unit length basis. This circuit model makes it
easy to determine, using conventional microwave computer-
aided-design software, the response of more complicated circuit
topologies which utilize inductively coupled structures.

A design for a simple half-wavelength forward coupler
which transfers a signal with a coupling factor of 20 dB from
one superconducting transmission line to another could be
fabricated by simply overlaying two microstrip transmission
lines for a precisely determined length. The total amount of
coupling is then determined primarily by the interaction length
and the thickness of the common superconductor relative to its
penetration depth. In particular, at 10.0 GHz a coupled signal of

–20 dB requires an interaction length of 0.6 mm for a symmetric

structure where dl = dj = 16 nm, dz = dd = 100 nm, and dJ =
210 nm. Substantially stronger coupling occurs for thinner
values of d3. In fact, it is often necessary to use strong coupling
approximations for coupler design when the common
superconducting film is significantly less than a penetration
depth thick.

IV. CONCLUSIONS

A dispersion relationship has been developed for the coupled
transmission line case of three arbitrarily thick superconductors
separated by two arbitrarily thick dielecrnc layers. The

dispersion equation, which was found by the transverse
resonance method, can be used to solve for the propagation
characteristics of the two dominant coupled line modes. These
results have been used to show that, in the symmetric case, the
mode with the lower phase velocity has the same attenuation per
wavelength as the mode with the higher phase velocity. In
addition, a fiist order expansion of the dispersion relationship
yields an accurate closed-fore expression for the attenuation of
the coupled line modes. Using a mutual inductance to describe
the coupling, an equivalent circuit has been presented, which
accurately models the propagation characteristics of the coupled
transmission line modes. The equivalent circuit model facilitates
the design of circuits using inductively coupled structures as has
been shown with the design of a 20 dB coupler. Experiments to
verify these concepts have been initiated.
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